
Vision Based Autonomous Vehicle
Rami Awar, Tarek Tohme

American University of Beirut
Beirut, Lebanon

rba13@mail.aub.edu, tpt00@mail.aub.edu

I. INTRODUCTION

A. Problem Statement

The goal behind this robot is overcoming two challenges set
by the 2nd Annual AUB Robotics Club Engineering Design
Challenge. The first is navigating a road marked by lanes, and
parking the car at some point. The second challenge is more
evolved and consists of making deliveries to predefined locations
on a predefined map. The map will be provided as a scaled image
and nothing more.

II. DESIGN PROCESS

A. Requirements

• The robot should be able to travel at a speed of 0.4m/s to
1m/s, decided in reference to challenge maximum time and
path lengths.

• The robot height should have around 3 cm ground clearance,
decided in reference to wheel availability

• The robot should not cost more than 300$ in total, deter-
mined by our team’s maximum willingness to invest.

• The robot’s camera mount should be at least 15cm above
the ground as to get a wide viewing angle.

• The robot should be able to carry extra loads up to 2.5kg
more than its own weight.

• The robot length and width must be less than 30 cm to be
cut out of already available plexi glass.

B. Drive Mechanism

We chose differential drive for its cost effectiveness and
simplicity. The differential drive robot consists of two wheels
mounted an a common axis controlled by two seperate motors.
Two other supporting or caster wheels are mounted on a perpen-
dicular axis for equal weight distribution and stability.

C. Selection of Motors and Wheels

To choose motors we need to get an estimate of the needed
specifications. We chose 9cm diameter wheels to get a clearance
of 3cm at least.

T = h2 + hk + k2T = h2 + h · k + k2

RPM =
60 · speed
π · diameter

=
60 ∗ 0.5
π ∗ 0.09

= 110 r.p.m.

We’ve got 2 motors, a total mass of around 4.5kg, and 4 wheels
to divide the weight upon.

Weight ≈ 45N = 2w1 + 2w2 ⇒ w1 ≈ 8N

Where w1, w2 are the weights acting on each drive wheel and
each caster wheel, and more than half of the weight is on

the caster wheels gives us the earlier result. Considering a low
friction surface, a friction coefficient of µ = 0.85 would be a
safe assumption. Maximum torque is needed at the beginning of
movement to overcome static friction, which can be calculated as
follows:

Tmax = µ · w1 · radius = 0.85 ∗ 8 ∗ 0.045 ≈ 0.3 N ·m

In summary,
• Motor RPM = 110
• Motor torque = 0.3 N ·m
• Wheel diameter = 9cm

We found just the right motor for our specs, which is the FIT0441
brushless dc motor from DFRobot.

Fig. 1. FIT0441 Brushless DC Motor

It operates at 12V, has an internal encoder, and has the
following specifications:

• Motor Rated Speed: 7100− 7300rpm
• Motor Torque: 2.4 kg · cm ≈ 0.24 N ·m
• Motor Shaft Speed: 159 rpm
• Reduction Ratio: 45 : 1

Notice that the torque provided is less than that needed, and
the speed is more than that required. For this adjustments for
decreasing the maximum allowed weight were made, and no
problems were faced whatsoever.

D. Chassis Design

Fig. 2. Advantage of cylindrical chassis

As a general shape, we chose a cylindrical chassis for its
increased maneuverability and slightly easier obstacle avoidance
as shown in Figure 2. To fit several components, we have gone
with a stacking approach. Motor controllers, sensors, and PCBs
are on the bottom-most layer, while the higher layers will hold



more high level controllers such as a mini PCand a touchscreen,
along with a camera mount. The design was prototyped in
Autodesk Fusion 360, and iterated to preference. We added an
extra layer to have ample storage space, for the current and future
projects.

Fig. 3. Car CAD Model

E. Hardware Components

The following block diagram represents the connections be-
tween different parts of our robot. We will be using an arduino to
read sensor inputs and control the motors, and a serial connection
between the arduino and the raspberry pi to send and receive com-
mands. The raspberry pi will be performing the image processing
part to highlight goals and travel inside the provided path, as well
as constantly map the traveled path and display sensor data and
outputs on the screen.

Fig. 4. Car Hardware Block Diagram

Maximum voltage and current distributions are listed in the
following table.

TABLE I
CAR HARDWARE COMPONENTS

Components Rated Voltage Rated Current

DC Brushless Motors 12V 2A

Raspberry Pi 3 5V 1A

Raspberry Pi Cam 5V 500 mA

Touchscreen 5V 500 mA

Line Sensor 5V 10 mA

Ultrasonic Sensor 5V 20 mA

HC-05 BT Module 3.3V 10mA

With this knowledge we chose a 12V lithium polymer battery
with 1000mAh and 10C discharge rate to power both motors, and
a portable power bank with 10,000mAh and a 1A and 2A port to
power the arduino, rapsberry pi, touchscreen and sensors.

III. SOFTWARE

A. Controller Description

The robot depends solely on computer vision, and this approach
was chosen for future projects using this robot. A PI controller
was chosen due to high noise caused by track glossiness, and
tuned manually by testing (A derivative term was not tolerable
due to the mentioned noise).

B. Lane Tracking Algorithm Iterations

As a first attempt, we started with a very primal algorithm that
takes a large region of interest, extracts contours, and finds the
center of gravity of all the contours combined through averaging.
This puts weights on white areas and discards black areas. We
chose our error to be how much this center of gravity is offset
from the camera’s center of view, and passed this error into a
Kalman filter and the new smoothed value into our controller.
The problem with this attempt was that the pi was unneccessarily
processing the mid parts and edges of the image that carry no
significant data.



Fig. 5. Lane Tracking Error

As a second attempt, 2 regions of interest were chosen,
symmetric with respect to the center of the view. With the
same operations and some adjustments such as rejecting circular
contours to account for specular highlights, the new error becomes
(right offset)+(left offset) as demonstrated in the above Figure 5.
This provides a lot more control since we have two inputs instead
of one, and the number of possible states that can be detected
increased exponentially. Actions such as maintaining the same
distance from one lane alone when the other is missing become
possible with such an arrangement. This algorithm seemed to be
working perfectly on its own, with no sensors other than the pi-
cam itself.
Although the most prevalent methods for lane tracking are based
on line fitting such as the hough line transform or RANSAC, we
decided to go with a less computationally expensive approach
because we did not need more than that to solve our challenge. It
would have been more optimal to implement such algorithms, but
much more time consuming since neural networks would have to
be trained to map the line angles to steering angles. Any other
approach would not cover several cases and result in failure during
the competition.

C. Parking Logic

To park the robot in the parking areas, we used an ultrasonic
sensor to detect when an area becomes within view, and upon
that turned 90 degrees in the corresponding direction and parked.

D. Delivering to Predefined Locations

Our delivery method consisted of mapping the track beforehand
using odometry, and then using this map along with our encoders
and IMU to localize ourselves within the track based solely on
distances travelled and current heading. The brushless DC motors
have built in quadrature encoders which can read off the pi, and
the IMU calibration and filter were part of the Mahogany library.
As to the automated delivery method, we found that it would be
better to make the deliveries manually as we plan to use the robot

for future projects, and implementing such a system will alter the
topmost layer physically and permanently.

IV. CONCLUSION

In conclusion, building this robot was an introduction to
computer vision and its capabilities from visual odometry to
physical distance measurement which is all impressive when seen
from the perspective of pixel manipulation. This modular robot
will serve us in future projects that are more realistic than our
current challenge. It was a fruitful experience overall, and we
were glad to participate in this last EDC for us before becoming
organizers!

1) G. Singhpannu, M. D. Ansari, and P. Gupta, Design and
Implementation of Autonomous Car using Raspberry Pi,
International Journal of Computer Applications, vol. 113,
no. 9, pp. 2229, 2015.

2) M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D.
Dolgov, S. Ettinger, D. Haehnel, T. Hilden, G. Hoff-
mann, B. Huhnke, D. Johnston, S. Klumpp, D. Langer,
A. Levandowski, J. Levinson, J. Marcil, D. Orenstein, J.
Paefgen, I. Penny, A. Petrovskaya, M. Pflueger, G. Stanek,
D. Stavens, A. Vogt, and S. Thrun, Junior: The Stanford
Entry in the Urban Challenge, Springer Tracts in Advanced
Robotics The DARPA Urban Challenge, pp. 91123, 2009.

3) A. Steinfeld, Interface lessons for fully and semi-
autonomous mobile robots, IEEE International Conference
on Robotics and Automation, 2004. Proceedings. ICRA ’04.
2004, 2004.

4) W. Wang, S. Yang, Y. Li, and W. Ding, A rough vehi-
cle distance measurement method using monocular vision
and license plate, 2015 IEEE International Conference on
Cyber Technology in Automation, Control, and Intelligent
Systems (CYBER), 2015.

5) R. Munguia and A. Grau, Monocular SLAM for Visual
Odometry, 2007 IEEE International Symposium on Intelli-
gent Signal Processing, 2007.


	Introduction
	Problem Statement

	Design Process
	Requirements
	Drive Mechanism
	Selection of Motors and Wheels
	Chassis Design
	Hardware Components

	Software
	Controller Description
	Lane Tracking Algorithm Iterations
	Parking Logic
	Delivering to Predefined Locations

	Conclusion

