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Abstract—This paper will present multiple controller designs
for both speed and position control of a direct-current motor,
while abiding to requirements set in order to control an engrav-
ing laser. For both speed and position control, proportional, PID,
lag-lead, and full-state feedback controllers are investigated, and
experimental results from a Quanser Qube Servo that nearly
matches the mathematical model are compared with simulation
results from that model. The PID controller design in both
systems meets the requirements with the least error and is thus
chosen as the final design.

I. INTRODUCTION

The Direct Current motor is one of the most widely
used motors in industries worldwide. Even though they are
more costly to maintain over induction motors, they are still
preferred due to excellent speed control characteristics[NT09].
In addition to this, speed and position controllers are widely
available for DC motors of all sizes and power, from toy
motors to industrial grade motors. But even with all these
favorable qualities, simply applying constant power to a DC
motor will not maintain the desired speed[Awa10]. Distur-
bances taking place at any point inside the motor, whether
a varying load torque on the shaft or electrical noise on the
input, will guarantee that the motor speed drifts away from
that which is desired. There exists several types of DC motors
such as a stepper motor, a permanent magnet DC motor,
PCB motors, ... Each has its advantages and disadvantages
over the others, but for the purpose of this laser engraver
application, a brushed DC motor will be used. DC motor
shaft rotation speed and position (angle) are mainly measured
using encoders, which could be of many types (optical, rotary,
magnetic, ...). Then encoders issue a stream of pulses with
variable frequency according to the motor speed, hence have a
unit of Pulses-Per-Revolution (PPR). [ySEAH03] The encoder
in use in the experimental section of this paper is an optical
encoder mounted on the shaft of the brushed motor.

II. LITERATURE REVIEW

The main purpose of this paper is to investigate the fitness
of different controllers meeting set requirements for DC motor
speed and position control. The most widespread DC motor
driving method is PWM or Pulse Width Modulation, which
works by alternating the applied voltage from high to low
and vice-versa. This delivery of energy through a succession
of pulses allows for speed control by varying the duty cycle of
this alternating signal[SSU16]. The fast switching is seen by
the motor as a Vrms < Vsupply, which allows for voltage
variation digitally, without the use of varying resistances.
Most of the literature focuses on controlling DC motors with
simple feedback loops, using tunable compensators, and mod-
ern research investigates advanced tuning techniques relating
to artificial intelligence and optimization algorithms. Other
interesting control techniques are independent of sensors (i.e.

encoders of all kinds), and were based on estimating the
required states.

Thomas et al. worked on designing a position controller
of a DC motor by tuning a PID controller using a genetic
algorithm. The DC motor model is considered a third order
model, thus no approximations have been made to have more
DOFs. Aside from tuning the PID controller using a genetic
algorithm, the paper also discussed designing the controller
using the Ziegler-Nichols method. The second method has
shown to be inferior to the genetic algorithm tuner, which is
expected since ZN provides a first guess of the parameters
needed, and the stochastic nature of genetic algorithms works
on minimizing the error between the actual response and
desired response. Another advantage of the genetic algorithm
tuning technique is that is could be applied to higher order
systems as well, making it a modular multi-purpose algorithm.

Praesomboon et al. [SP09] proposed a sensorless DC motor
speed controller using a Kalman filter. With the end goal being
a system output of estimated speed, this was achieved by
designing the Kalman filter to reject noise. The error between
the estimated speed and reference speed is then fed back to the
system and driven to zero by a linear amplifier (proportional
gain). This method of senseless control based on estimating
states seems to have been popular since the 1970s.

In 1978, Rajaram et al. wrote about a new approach to
sensing a DC motor speed without the use of any additional
circuitry, cutting costs and increasing compactness without
affecting weight. They aimed to avoid traditional sensing
methods that involve external additional hardware along with
mechanical coupling by basing their measurement on the back
EMF of the motor, in addition to a sensing resistor in series
with the armature and some simple circuitry. That results in an
amplifier output that is proportional to the speed of the motor,
and thus can be used as a sensor measurement [Raj78].

Another intelligent DC motor position controller designed
by Ohishi et al. is a load insensitive controller, which works
by estimating the load torque [ea02]. By estimating this
torque the controller can adjust the torque needed to drive the
system to the required position without any steady state error.
This is similar to having a variable parameter mathematical
model, but instead of the controller being affected by each
parameter change, a state estimation is invoked to take away
that complexity and overhead in processing.

III. MODEL

The DC Motor dynamics used are based on the motor
model in Fig. [1]. The derivation



Figure 1. Circuit model of a DC Motor.

The equations for the internal generated voltage and the
induced torque developed by the DC Motor are given by:
[J.C12]

Tind = KφIA

ea = Kφωm

Applying Kirchoff’s law and Newton’s law to
system in Fig.[1]. The following is obtained:

J
d2θ

dt2
+ b

dθ

dt
= Ki

L
di

dt
+Ri = V −K

dθ

dt

Applying the Laplace transform, the transfer
function Gspeed(s) is obtained, assuming Kb = Km.

Gspeed(s) =
K

JLs2 + (JR + Lb)s+ (Rb+K2)

Introducing an integrator gives the position θ
as an output, and the transfer function becomes
Gposition(s), assuming Kb = Km.

Gposition(s) =
K

s[JLs2 + (JR + Lb)s+ (Rb+K2)]

The motor block becomes that in Fig.[2], where
Km, Kb, J, b, Ra, La are the motor parameters pro-
vided.
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Figure 2. Block diagram for the DC motor model.

The State Space representation of the speed sys-
tem has been derived to show two states that are
expressed in terms of the given parameters:

[
x′1
x′2

]
=

[−JR−Lb
JL

1
−Rb−K2

JL
0

]
∗
[
x1
x2

]
+

[
0
K
JL

]
∗ u(t)

y(t) =
[
1 0

]
∗
[
x1
x2

]
IV. ANALYSIS

The speed control system is a second order elec-
tromechanical system having two poles at s1 =
−7399 and s2 = −16.2. It is seen that the pole
s2, which corresponds to the mechanical system
dominates the electro-mechanical system’s response
because of a difference by a factor of 456 from
the pole s1, which corresponds to the electrical
system.Henceforth, since the factor of difference is
greater than five, the system could be approximated
by a first order mechanical system, since the me-
chanical response and second order response are
exactly alike as seen in the following figure.

Figure 3. Comparison between electrical system, mechanical system, and
electromechanical system.

The red curve represents the mechanical system,
the light blue curve represents the electrical system
and the blue dotted curve represents the second
order electromechanical system.
In this figure, it is seen that the mechanical and
electromechanical systems overlap however, the
second order system is used in both analysis
and design since it is intended to have similar
responses to the responses of the Quanser Qube
that are achieved experimentally.

In the first analysis iteration, it is found that the
damping friction coefficient is unrealistic for several
reasons listed below:
• 10N · m are exerted by the motor shaft at a

speed of 1rd/s which is similar to hanging 10kg
at the end of a 1 meter long rod, and spinning
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it at 1rd/s which is 60 degrees per second. This
torque obviously cannot be achieved by a motor
running at 10-24V with around 2A of current
and without a gearbox.

• Quanser Qube Servo parameters are similar to
the provided parameters in all aspects but the
viscous friction coefficient, which differs by 6
orders of magnitude.

• The proportional gain, which translates into
voltage required to drive the motor, needed to
track a step response (i.e. 1rd/s) is over 7000.
A 7000V input to the motor is impossible
knowing that it operates on 10-24V.

A more reasonable value has been derived by
referring to the Quanser Qube Servo parameters
posted on their website, by using the formula

Tnom = b · ωnom
. It is found that b = 6.88 ∗ 10−5N ·m · s/rad and
the derived value is used throughout the analysis,
simulation, and experimentation.

A. Speed Control System

1) Time Domain Analysis: The time domain analysis
of the speed control system was done via MATLAB
software, ltiview and stepinfo commands.
The following figure shows both open and closed
loop response of the speed system in response to a
step input.

Figure 4. Comparison between open loop speed response and closed loop
speed response.

It is seen that the closed loop system is better to
meet the speed requirements since it is near 1 at
steady state whereas the open loop is near 20 at
steady state.
For open loop, the peak is 19.7 so it is an
undesired response. However for the closed loop,
the overshoot is 0, the steady state error is 4.8%,
and the settling time is 0.0113 sec.

2) Frequency Domain Analysis: It was verified upon
simulation via MATLAB that the system’s speed
is stable. This is verified with infinite gain margin
and a safe phase margin in both the open loop and
closed loop systems. The bandwidth of the closed
loop system exceeds that of the open loop speed
system by a factor of 21.6; which clarifies that the
closed loop response is of a better response.

Speed open loop: Phase margin: 90.4648 degrees
Gain Margin: Inf dB
Bandwidth: 16.1278 rad/s

Figure 5. Bode plot of the open loop speed system.

Speed closed loop: Phase margin: Inf dB
Gain Margin: Inf
Bandwidth: 348.210 rad/s

Figure 6. Bode plot of the closed loop speed system.

3) Controllability and Observability: The system is
composed of two controllable and observable
states which means that the speed system is both
completely controllable and completely observable
.Therefore, all states in the system can be modified
to reach a certain desired response, and can all
be sensed, measured, using sensors to know the
estimators for the input of a system.
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Controllability matrix of the speed system:[
1 −7.4176e3

0 1

]
Uncontrollable states = 0

Observability matrix of the speed system:[
0 2.3529e6

2.3529e6 0

]
Unobservable states = 0

B. Position Control System

1) Time Domain Analysis: The time domain analysis
of the position control system was done via MAT-
LAB software, LTIVIEW and stepinfo commands.
The following figure shows both open and closed
loop response of the speed system in response to a
step input.

Figure 7. Open loop position step response.

Figure 8. Closed loop position step response.

Applying the step for both open loop and closed
loop position systems, it is seen that the open

loop system increases as a ramp nonstop, which
seems logical since an integrator was added which
aggravated stability, so it is definitely not desired
as a system response. However, the feedback in the
closed loop system made the response settle to 1
instead of increasing infinitely which is desired. For
the closed loop, the maximum overshoot is 20%, the
settling time is 0.468 seconds, and a steady state
error of 0.

2) Frequency Domain Analysis: It was verified upon
simulation via Matlab that the system’s speed is
stable. This is verified with 51.5dB gain margin
and 48 degrees phase margin in the open loop and
closed loop systems. The bandwidth of the closed
loop system exceeds that of the open loop speed
system by a factor of 1.3; which clarifies that the
closed loop response is of a better response.

Position open loop: Phase margin: 47.8028 degrees
Gain Margin: 51.5259 dB
Bandwidth: 18.4 rad/s

Figure 9. Bode Plot of the open loop position system.

Position closed loop: Phase margin: 49.3 Degrees
Gain Margin: 51.5 dB
Bandwidth: 23.5968 rad/s
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Figure 10. Bode Plot of the closed loop position system.

3) Controllability and Observability: The system is
composed of three controllable and observable
states which means that the position system
is both completely controllable and completely
observable .Therefore, all states in the system can
be modified to reach a certain desired response,
and can all be sensed, measured, using sensors to
know the estimators for the input of a system. This
statement, is clarified in both the controllability and
observability matrices respectively. Controllability
matrix of the position system:1 −7.4176e3 5.4902e7

0 1 −7.4176e3

0 0 1


Uncontrollable states = 0

Observability matrix of the position system: 0 0 2.3529e6

0 2.3529e6 0
2.529e6 0 0


Unobservable states = 0

V. DESIGN

A. Speed Controller

In speed control the transfer function Gspeed(s)
is used in designing the speed controller. The
four controllers that will be designed are a
proportional controller, a proportional-integral-
derivative controller, a lead-lag controller using
root-locus, and a full state feedback controller. The
requirements to be met are the following:

• ±100rpm forces the motor speed to stay
within this range of the desired input speed.

From this requirement, it can be deduced that
the maximum overshoot is 100rpm/ωmax =
100rpm/2000rpm = 0.05 which translates to 5%.

1) Proportional Controller:

From these requirements it is found that ζ =
0.4765 from the 5% maximum overshoot criterion.
A 0% overshoot corresponds to ζ = 1.0 and so the
accepted range of zeta would be 0.4765 < ζ < 1.
Plotting the root locus and choosing a gain such
that the chosen roots meet the criteria gives a
gain C = 8.34. A comparison of the proportional
controller step response and the closed loop step
response is found in Fig.[11].

Figure 11. Comparing Speed Closed Loop and Proportional Step Responses

It is seen that the maximum overshoot is 0.3%
which lies well within the required range.

2) PID Controller:

In designing the PID controller, MATLAB’s
pidTuner command is used. This allows to
customize the transient response speed and con-
troller robustness to get the desired response much
quicker than manual tuning using the Ziegler-
Nichols method. A comparison of the closed
loop step response and the proportional-integral-
derivative controller step response is shown in
Fig.[12]. A PID controller is chosen over a PI
controller due to the quicker transient response. A
PI controller will have less of an overshoot at the
cost of lost speed. Given that an overshoot of 3%
lies well within the allowed range (100rpm), the
focus was chosen to be on speeding up the response.
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Figure 12. Comparing Speed Closed Loop and PID Step Responses

3) Compensator Design with Root Locus:

It is seen that by simply adjusting the gain (as
done in the preceding proportional controller), the
requirements can be met and thus no lag or lead
compensator is necessary. To further prove this
point consider the following:
The transient response of the system settles after
11.3 ms at a value of 0.952 rad/s when it responds
to a unit step response, which means that the system
response is quick enough. Hence, the transient
response does not need modification. This is
verified by the two real closed loop poles that yield
an angle deficiency of zero degrees. Therefore,
any pole-zero placement would not have any effect
on the transient response. Moreover, because it
lacks an integrator, it is a type 0 system. This
means that for a given step input, the response
will yields a steady state error that decreases with
an increase in K, proportional gain. Therefore,
with the current system, a lag compensator would
not decrease the steady state error because of the
absence of complex closed loop poles. In addition
to this, the response has two closed loop real poles
that are large enough to cancel the effect of the
near origin pole-zero. Hence, the overall angle that
would result is zero which means that we don’t
have a lagging compensator. With such criteria,
the design of a lag-lead system would not give the
desired response. Hence, the better solution is to
use a proportional gain that decreases the system’s
steady state error, or a PID compensator that drives
this error to zero.

4) Full state feedback controller: In designing the full
state feedback controller, it is assumed that all states
of this system are measurable and available for
feedback. In order to design the full state feedback
controller, it is crucial at first to check if the system
is fully state controllable. As checked before, the
speed system is fully state controllable. The speed
system is known to have the following state space
representation:[
x′1
x′2

]
=

[
−7415.2 1
−119614.1 0

]
∗
[
x1
x2

]
+

[
0

2352941.176

]
∗u(t)

y(t) =
[
1 0

]
∗
[
x1
x2

]
The state controller will be placed such that to

make the control signal u=-[K]x+k1r. The gain
matrix [K] will be decided with respect to the
location of the desired closed loop poles of the
system. The specifications for the speed system is to
track the input without exceeding ±100 rpm, so the
desired closed loop pole locations will be chosen
to be s1 = −189 + j169 and s2 = −189 − j169
in order to meet these specifications. Using the
function place in Matlab we get the gain matrix
to be:

[K] =
[
22.16 −0.003

]
A−BK =

[
−7415.2 1
−5.225e7 7038.2

]
Using u= -[K]x + k1r and x′= Ax + Bu so x′=

(A-BK)x + Bk1r which will become:[
x′1
x′2

]
=

[
−7415.2 1
−5.225e7 7038.2

]
∗
[
x1
x2

]
+

[
0

5.214e7

]
∗r

y(t) =
[
1 0

]
∗
[
x1
x2

]
B. Position Controller

In designing the position controller, the transfer
function Gposition(s) is used. The four controllers
that will be designed are a proportional controller,
a proportional-integral-derivative controller, a lead-
lag controller using root-locus, and a full state
feedback controller. The requirements to be met are
the following:
• Maximum overshoot and steady state error of
1◦ in order for the laser engraving to be legible

• Ability to travel 50◦ in 0.5 seconds
The first requirement is clear, while the second must
be met with simulation/implementation and accord-
ing adjustments since the relationship between the
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degrees turned and the time taken by the motor to
settle is not linear and is slightly complex to derive.

1) Proportional Controller: From these requirements,
it is found that ζ = 0.7796 if we consider the 1◦ rel-
ative to 50◦ which would be an acceptable choice.
A safer choice would be to consider the 1◦ relative
to 360◦ since any rotation greater than this limit
can be broken down into multiple rotations with a
larger modulo. This gives us 0.7796 < ζ < 0.8831,
which would translate into an area to place the poles
in on the root locus. Plotting the root locus using
MATLAB and using the command sgrid, then
choosing any point within the area formed by the
two lines forming angles 27.98◦ and 38.83◦ with the
real axis, we get Fig.[13]. Decreasing the obtained
gain from 0.344 to 0.3 moves us towards the safer
choice of ζ = 0.8831.

Figure 13. Root Locus of Position Control System

The choice of Kp = 0.3 produces the response to
a 50◦ step input in Fig.[14]. We see that the maxi-
mum overshoot is less than 0.5◦ and the response is
within 2% of its final value in less than 0.5 seconds,
thus meeting our requirements.

Figure 14. 50◦ Step Response of Position Proportional Controller

2) PID Controller: The PID controller tuning was
done using MATLAB’s pidTuner command. The
obtained results meet the 1% overshoot require-
ment, as well as the 50◦ in 0.5 seconds requirement.
Fig.[15] shows the step response of this new system
along with the derived Kp, Ki, andKd values.

Figure 15. Position PID Controller 45◦ Step Response w/ Kp =
6.7498,Ki = 15.8366,Kd = 0.6035

3) Compensator designed via root locus: Upon
simulation via Matlab, the response to a unit
step has 0.11 s rise time and a steady state error
of zero. A lead compensator was designed with
the intent of changing the rise time to speed up the
transient response. The closed loop poles of the
original system initially were at:

s = −8.06 + j15.9

s = −8.06− j15.9

s = −7401.53
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Because the complex conjugate poles are complex
conjugates, therefore, the zeta and the natural fre-
quency were found as:

ζ = 0.452

ωn = 17.83rad/s

Since, the system’s zeta is not in the desired range
[0.7796-0.8831] that corresponds to the intended
50 degrees and a safe margin of 360 degrees
respectively; The average of both was selected,
0.83. Therefore the new complex conjugate poles
change to:

s = −14.82 + j9.9

s = −14.82− j9.9

The compensator was designed using the angle
deficiency method with an angle of deficiency of
64.26 degrees that relies on one lead compensator
because the angle is strictly less than 65 degrees.
This method yields the chosen zero and pole of the
compensator as follows:

z = −11.85; p = −25.8

Moreover, the gain was calculated to be K =
47.03e6 which is unrealistic and drives the response
to instability as shown in Fig.[16].

Figure 16. Position system response to a lead compensator.

Furthermore, because the lag system tends to in-
crease the maximum overshoot beyond the desired
limitation, and yield a long tail, the lag compensator
was not used.

Hence, with these two types of compensator
designs yielding no improvement to the system’s
response, the lag-lead compensator design would
not be an improvement either. As a result, no lagor
lead compensator is recommended.

4) Full state feedback controller: In designing the full
state feedback controller, it is assumed that all states
of this system are measurable and available for
feedback. In order to design the full state feedback
controller, it is crucial at first to check if the sys-
tem is fully state controllable. As checked before,
the position system is fully state controllable. The
position system is known to have the following state
space representation:x′1x′2
x′3

 =

 −214370 1 0
−345684.8 0 1

0 0 0

∗
x1x2
x3

+
 0

0
6.8e6

∗u(t)
y(t) =

[
1 0 0

]
∗

x1x2
x3


The state controller will be placed such that to

make the control signal u=-[K]x+k1r. The gain ma-
trix [K] will be decided with respect to the location
of the desired closed loop poles of the system. The
specifications for the position system is to track the
input of 50◦ in 0.5 sec without exceeding ±1◦ ,
so the desired closed loop pole locations will be
chosen to be s1 = −10 + j6.7, s2 = −10 − j6.7,
and s3 = −100. A second order approximation was
used using the fact that the complex conjugate poles
are dominant with a factor of 10 difference from
the third pole, to meet the required specifications.
Using the function place in Matlab we get the gain
matrix to be:

[K] =
[
−1.44e9 6754 3.151e−3

]

A−BK =

−2.14370e5 1 0
−3.456e5 0 1
9.84e15 4.59e10 2.14e5


Using u= -[K]x + k1r and x′= Ax + Bu so x′=

(A-BK)x + Bk1r which will become:

[
x′1
x′2

]
=

−2.14370e5 1 0
−3.456e5 0 1
9.84e15 4.59e10 2.14e5

∗[x1
x2

]
+

 0
0

−9.845e15

∗r
y(t) =

[
1 0 0

]
∗

x1x2
x3


According to those results, the full state feedback
controller shows non-linearity because of the high
gain values. This issue, is caused by the large gain
the control signals carry that require larger, more
expensive, actuators.
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VI. FINAL DESIGN

Relying on the experimental validation, the PID
controller is chosen to be the final controller design.
For both speed and position, the PID controller
showed rejection to any time of noise applied while
meeting the specified criteria for both speed and
position control systems. The PID compensated
system, is distinguished by a fast transient with
a small settling time while maintaining the spec-
ified maximum overshoot. While on the contrary,
any other controller as P, PI, full state feedback
controllers, reach the desired specifications but the
difference is best shown in disturbance rejection.
The P controller, minimizes the error to zero if
the proportional gain was large enough but doesn’t
respond fast to any disturbance. The PI controller
rejects quite well, but compared to the PID, the PID
controller is better in increasing stiffness against
noise. The lead compensator showed nonlinearity
that corresponds to a large gain in position control
while on the other hand, it was not used in speed
control because, the system consists of two real
roots. The lag compensator increased overshoot
beyond the limit and increased the position’s re-
sponse’s settling time while on the other hand, the
lag compensator was not applied in speed control
because of the two real roots that broke the rule
of thumb that relates to the angle criterion. Full
state feedback controllers, responded well in speed
control, reached specifications, and competed with
the PID controller a lot. But, in position control, the
full state feedback controller showed nonlinearity
because, the system had massive gains within its
state space representation. The thing that makes
such system more expensive than a PID controller
whose value is not as high as large actuators.
Henceforth, PID controller met all desired specifi-
cations in both speed and position control systems.

A. Disturbance Rejection

The disturbance to output transfer function can
be represented as follows:

Gdisturbance(s) =
Ls+R

(Ls+R)(Js+ b) + C ∗K +K2

where C stands for the compensator’s transfer
function.
From the transfer function, it can be noticed that if
we have an infinite value in the denominator then,
the output due to the disturbance would converge
to zero in steady state. To meet such specification,
it was found that the PID controller induces a pole
at the origin in its transfer function which results

in the desired infinite value in the denominator
that drives the system’s disturbance to zero. The
difference between both PI and PID controllers
was the time each controller’s system would need
to eliminate the error. PID controllers’ settling time
was less than that of the PI controller by a factor
that increased as we increase the magnitude of the
disturbance as MATLAB verifies such argument.
The maximum value of the response to a unit step
disturbance is:

• Speed Response: 7.57rd/s at t=0.00196s. This
value decays exponentially until zero at 0.12s.

• Position Response : 394rd at t=0.201s. This
value decays exponentially until zero at 2.5s.

These values are found by observing the step
response to the disturbance transfer function in
MATLAB Fig.[17].

Figure 17. Position System Response to a Step Disturbance

B. Tracking

The PID corrected system lags the the ramp
input by a magnitude of 0.03 and tends to correct
its behavior as time increases to ideally track the
input response. The PID controller was designed to
surpass the given specifications, as the experimental
validation proved. No oscillations are shown versus
a ramp input. The system is sufficiently damped
so that both control systems meet the maximum
overshoot criteria that limits zeta to a certain range
to assure a margin for safety purposes.

VII. EXPERIMENTAL RESULTS

To simulate the numerical model, MATLAB’s
Simulink is used. Important things to note are the
following:
• The process of converting the input from de-

grees to radians (in the case of position) and
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from RPM to radians per second (in the case of
speed) is done by inserting a scaling gain block
RPM2RDS right after the input, and another
RDS2RPM right before the output. This way,
the system isn’t affected by what the input
unit is, and runs according to its base SI units
which are radians and radians per second. The
conversion provides an interface for the user
to input more familiar units, and observe more
familiar outputs.

By trial and error, in an attempt to minimize
the difference between the mathematical model and
the physical DC motor setup, it is derived that
the damping friction coefficient is b = 20.88e-5
N ·m·s/rad. Using this damping friction coefficient
allows the mathematical model responses to most
precisely match the physical model responses. This
is found after analyzing and designing the above
controllers, so this change in b is not made. All
results will be based on b=6.88e-5N ·m · s/rad.

A. Speed Control

In speed control, it is important to note that even
though the step inputs are speeds of 1 rd/s, the error
requirement of 5% will result in this requirement
being met for any speed from 0 rpm to 2000 rpm,
which is the range of operation of the motor. Thus
step responses of 1 rd/s meeting the 5% error
criterion are sure to meeting the requirement for
higher speeds; the unscaled step response is enough
to portray the behavior of the motor for all operating
speeds.

1) Proportional Controller:

Implementing the proportional controller with a
gain Kp = 8.381t results in a very oscillatory
response caused by the variance of the damping
friction coefficient b from its claimed value by
Quanser. This is caused by overuse, lack of lubri-
cant, wearing over time, etc. Decreasing the gain
to Kp = 3 enhances the response by decreasing
the oscillations, but the steady state error increases
significantly. This shows that a gain of 8.381 is
better than a gain of 3 at tracking the step input,
but at the cost of a much larger overshoot and more
sustained oscillations. This is shown in Fig.[18],
and the requirement of ±100rpm cannot be met
using a proportional controller without changing the
damping friction coefficient. In this case, the actual
response differs greatly from that expected from the
mathematical model. Perhaps motor lubrication can
help meet the requirement.

Figure 18. 1rd/s Step Response of Speed Proportional Controller w/ Kp =
8.381

2) PID Controller:

Using the parameters derived for the numerical
model, the Quanser Qube produces very fast speed
changes, which nearly damages the motor. This
is caused by the Kd 0.0006, so it is increased
to 0.5 to stop this destructive behavior. KpandKi

are the same as the ones derived in our numerical
model. This results in the step response observed
in Fig.[19]. This response doesn’t meet the re-
quirement either, but with some different tuning
definitely could, at the cost of response time. As
is seen in the figure, the motor takes around 0.5
seconds to settle, which is arguably large in speed
controlling this motor compared to the responses
acquired with MATLAB using the mathematical
model.

Figure 19. 1rd/s Step Response of Speed PID Controller w/ Kp = 6,Kd =
0.5,Ki = 20

The PID controller performs much better than the
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proportional controller, mainly due to the fact that it
contains an integral term and can drive the error to
zero. Perturbing the shaft with external objects, con-
stant pressure is applied, and the motor increases
its torque to drive its speed towards the desired
speed. This error minimization is not possible using
a simple gain factor.

B. Position Control

In position control, it is important to note that
even if the responses were for a position of 1
degree, the maximum overshoot and steady state
error of 1 degrees is still met, as well as the 50
degrees in 0.5 seconds criterion, since the error
requirement is derived as a percentage. As long as
the error is within this percentage the requirement
is satisfied for any input less than 360 degrees.

1) Proportional Controller: Implementing the propor-
tional controller with gain Kp = 0.3 on the Quanser
Qube Servo gives us a significant and visible steady
state error seen in Fig.[20].

Figure 20. 45◦ Step Response of Position Proportional Controller w/ Kp =
0.3

This error is corrected by increasing the gain to
0.5 to account for the different viscous friction coef-
ficient of the Quanser Qube Fig.[21]. A proportional
controller cannot drive the steady state error to zero
on its own, and this is seen in the experimental
results.

Figure 21. 45◦ Step Response of Position Proportional Controller w/ Kp =
0.5

2) PID Controller:

Using a PID controller, the controller exhibits
much higher disturbance rejection and response
speed, as well as less sustained oscillations. By
perturbing the shaft with external objects, the motor
does not fail to return to its preset position without
any error or sustained oscillations. This is seen in
Fig.[22].

Figure 22. 45◦ Step Response of Position PID Controller w/ Kp =
6.7498,Ki = 15.8366,Kd = 0.6035

VIII. CONCLUSION

Six controller designs for both speed and po-
sition control systems were designed, simulated,
experimented and evaluated against the given re-
quirements that limit the transient and steady state
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responses to maximum overshoot and a desired set-
tling time for phase, angle shift and speed control.
The PID, PI, and full state feedback controllers
competed against each other’s characteristics, as
they all drove the error to zero, met the required
specifications, and met the desired responses upon
simulation and experimentation. The PID controller
was a better design because of its immediate re-
sponse to any kind of disturbance, faster transient
response even though by a difference of 0.05 sec-
onds from its closest competitor,full state feedback,
and relative cost compared to other controllers that
rely on a big budget to satisfy the large gained
control signals by means of large actuators.

NOMENCLATURE

θ̇ Angular Speed in rd · s−1
ω Angular Speed in rd · s−1
ωnom Motor Nominal Angular Speed in rd · s−1
θ Angle in rd
b Motor Viscous Friction Coefficient in N ·m ·

s · rd−1
J Moment of Inertia in kg ·m2

Km, Kb Motor Constant in N ·m · A−1
La Armature Electric Inductance in H
Ra Armature Electric Resistance in ω
T Torque in N ·m
Tnom Motor Nominal Torque in N ·m
Vrms Root Mean Square Voltage in V
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