
PumpkinBox Game Platform
Rami Awar - 201600300, Karl Hayek - 201601287

American University of Beirut
Beirut, Lebanon

rba13@mail.aub.edu, kch05@mail.aub.edu

I. INTRODUCTION

A. Problem Statement

The goal behind this application is connecting a client to the
PumpkinBox server, allowing them to connect with their friends,
playing games or chatting. This is done with maximum security
in mind to protect user privacy, and maximum scalability in case
there was a plan to take this to the market at some point. (As time
progressed, emphasis on security and scalability slightly declined
due to time constraints)

II. APPLICATION FLOW

The following is a flow diagram describing our application flow
from a high level of abstraction.

Each element will be further elaborated after the neccessary
Server/Client classes are discussed so as to be able to reference
methods used to accomplish various tasks.

A. Functionality

Our application provides the user with the ability to signup and
login first and foremost. During signup, we have implemented a
feature validation engine in regex, that provides visual feedback

to the user while entering information. After logging in, the client
application is passed an authentication token to authenticate with
the server during future transactions.

After logging in, the user is sent to a home page, on which a live
online friends list, buttons to view personal profile, add friends,
check friend requests, and access game hubs are displayed.
Clicking on a friend name in the list opens up a chat window
that allows the user to send a message to another user. There
is no chat history implemented yet, although the foundation is
laid out; the messages are all stored in the database, with the
corresponding dates and a flag to check whether or not they
were received and read.

The requests screen displays incoming friend requests, with an
option to accept or reject each. The add friend screen allows
the user to add friends by username (email). We chose the
email identifier approach for simplicity; implementing a custom
username based approach would require more complicated
queries relative to our current implementation. The my profile
button takes the user to the personal profile screen which consists
of 2 tabs, one for viewing recent game activity, friends list, and
total experience level. The second tab displays a modifiable
friends list, modifiable user info, and the same experience level
progress bar.

Finally, the gamehub includes some bar charts to view
global and local stats concerning one game, and a tab for global
chats and online users. This was not fully implemented due to
time constraints. The gamehub offers the user two options: Play
offline, or Play with a friend. Choosing to play offline would
open a game window to play a match against an AI. Choosing
play against a friend opens a new window that allows the user
to choose which friend they want to start a game against.

B. Extra Features

• Validation system: checks for non empty text-fields, strong
passwords consisting of characters and digits, and email
validation.

• Realtime persistent connections to fetch notifications and
objects.

• Artificial intelligence in games (tic tac toe and checkers,
although checkers is not fully integrated)

• Security and scalibility oriented design: making use of
authentication tokens, sha256 password hashing, ...

•

III. SERVER

A. Requirements

• The server should be listening for connections indefinitely
• The server must assign a new thread to each client requesting

a connection
• The server must communicate safely with the client, en-

crypting any sensitive information across the connection and
decrypting at the endpoints

• The server must connect to the PumpkinBox database
• The server must check the authenticity of each client in each

client request by using authentication tokens

B. Implementation

The Server class is meant to be run on a private hosted server
running Java 1.8. It has no GUI since no client must have
access to the sensitive information present in it such as database
credentials and connections to other clients.

The Server class has a ServerSocket and port number
member variables for obvious reasons, and an acceptConnections
core method. The acceptConnections method instantiates the
ServerSocket at the defined port number, and listens in an infinite
loop for new connections, assigning and starting a ServerThread
for each new connection request.

The ServerThread class is responsible for handling each client
connection, parsing requests following a well formatted API,
and accessing the database. More information on the API later
in the document.

The parseRequest method in ServerThread decodes the
client request and executes whatever instructions are needed.
For example, for SIGNUP requests, the server hashes the
password and stores it in the database along with the entered
username(email), firstname, and lastname.

In our main method inside the Server class, we instantiate a
new Server and call acceptConnections(). This runs our multi-
threaded server indefinitely.

C. Methods

The Server class must be able to perform several functions
which are neccessary to the application such as checking the
authenticity of users, adding users, editing profile information,
fetching friends, fetching new messages, ... What follows is a list
of functions that the server performs. More details concerning the
technical details of the functions like their input and output data
(API) are covered in APPENDIX A.

• The server class must have a method to sign up a user,
checking if he already exists and then choosing to add him
to the users database or not.

• The server class must have a method to login a user, checking
if he already exists, checking the authenticity of his token
after confirming that his hashed password matches the one
saved in the database.

• The server class must be able to get any incoming friend
requests after confirming the authenticity of the active user’s
authentication token. To avoid redundancy, any request to the
server excluding signup and login, must have a user ID along
with a valid authentication token. This is to avoid having the
user send his credentials upon every request.

• The server class must be able to get the list of friends
belonging to a given user. (Offline and online - All friends)

• The server class must have a method to fetch the recent game
activity of a certain player.

• The server class must have a method to get the friends list
of a friend (not the logged in user) but only after the privacy
privileges are checked.

• The server class should be able to get the activity list of
a friend (not the logged in user) but only after the privacy
privileges are checked.

IV. CLIENT

A. Requirements

• The client should start with a login screen
• The client should be able to communicate with the Pump-

kinBox server via the designed API
• The client must update the GUI where needed
• The client should encrypt sensitive data before sending to

the server, ensuring safe communication
• The client should provide an access token with the API

request after logging in, in order for the request to be handled

B. Implementation

The client class contains one function for now, which is the
sendLoginData function. This function sends login data to the
server, and returns a LoginResponseObject which is an object
we created to encapsulate the status code, the server response,
and the authentication token. This client function maintains a
non-persistent connection and closes the socket after it is done.

Calling this client function is done by accessing this static
method (sendLoginData).

V. CHAT SERVER

The chat server plays an essential role in managing all realtime
operations such as friend requests and friend request notifications,
messages and message notifications, game invitations, ... This
server connects persistently to a chat client which is constructed
in the home controller class.

VI. CHAT CLIENT

A. Requirements

• The client should update the online friends list every second
• The client should be able to send messages to friends
• The client must update the GUI in a live manner
• The client should check for new messages and notifications

received every second

VII. GAME SERVER

A. Requirements

• Piping game moves from one user to another.
This is achieved by saving each game move in a MessageObject

with a sender id, receiver id, game name, and game move.

VIII. GAME CLIENT

A. Requirements

• Send game moves to GameServer
• Receive game moves related to current client from Game-

Server

IX. DATABASE

The database is hosted on ”34.206.52.140:3306/pumpkinbox”
which is an amazon lightsail private hosting server. The MySQL
server at this URL runs continuously, and is accessed by us
through SSH through the MySQLWorkbench.

So far, we have only designed the pumpkinbox users table in
the following manner:

ID: integer - primary key - autoincrements
firstname: varchar(45)
lastname: varchar(45)
password: varchar(255)
email: varchar(255)
authtoken: varchar(255)
expiration: varchar(255)

X. GAMES

A. Gamehub

When the user clicks on a game from the home page, a new
window that contains the games hub is displayed. This window
contains an option to play the selected game with a player - who
has to be online - from the users friends list, and another option
to play the game offline. Furthermore, the game hub contains the
games global standings, the players history of scores in this game,
and the global chat for this game, where the user can challenge
a player who is online. The statistics part of the game hub show
the individual statistics of the player (number of wins, losses and
ties) and the global statistics for all players.

B. Games

We have written two games for the project, Tic Tac Toe, and
Checkers, and wrote AIs for both, whose intelligences range from
medium to high, meaning that it is manageable to beat them,
however doing so requires some thinking. We decided to make a
game hub for each hub to centralize all of the things related to
the game in this hub. Also, we decided to work on no more than
two games to polish them, give them good AIs, and make them
more fun.

The Tic Tac Toe AI works by deciding its first move according
to the first move of the user (or if the AI has the first move, it
chooses between a corner cell and the center cell). For the rest
of the game the AI makes at each turn: a move that results in

a winning combination; if cannot find one then it checks if it
can make a move to block a possible winning combination of the
opponent; if not then it makes a random move. The Checkers AI
works by checking all possible next three moves at every turn, and
choosing the best outcome. This is done by building a binary tree
of height 4 than contains all possible moves as children. Picking
the best move from this decision tree is done using the MinMax
algorithm, which picks the move in the binary tree that has the
highest assigned score for the AI and the lowest assigned score
for its opponent. The Checkers game was more challenging to
implement because we made it so that a piece is made a king if
it reaches an end of the board, which makes it able to move both
up and down. Furthermore, we made it so that if a piece kills a
piece of the opposite type and can kill a second one in a row, it
is made possible for it to do so.

For the two games, we used non-persistent connections for
sending and receiving moves between players. In order to prevent
the GUI from stalling while waiting for the response from
the server, we run a thread dedicated to the move sending
and receiving functions. These functions initialize a connection,
send/receive a move with an ID that identifies the sender and
another that identifies the user, and then close the connection.

XI. API

We have constructed an API for the client and server to
communicate efficiently. Each request made by the client to the
server follows a certain format: VERB - SECRET - CONTENT

VERB is the action type to be performed by the server. The
different types of VERBs are LOGIN, SIGNUP, UPDATE, GET,
and MESSAGE. The parseRequest function takes care of the rest.

SECRET is the username,password encrypted combination
in case of LOGIN and SIGNUP requests, or an authentication
token which is provided by the server after logging in (in case
of regular requests).

CONTENT contains the request content in the case of signing
up (firstname, lastname), or the command required in case of
UPDATE, GET, and MESSAGE.

We have also implemented a class called CODES that
simulates HTTP response codes in a way, in order to make status
code handling easier. Each code simply responds to a string. It’s
a very simple class consisting of public static strings only.

More information available in Appendix A.

XII. ORGANIZATION

This section will describe how the whole code is organized
in terms of packages, classes, fxml files, and css stylsheets.
Utility packages are directly under the src folder, like time,
security, database, api, validation, etc. All UI components on the
other hand are inside a ui package in the src folder. Some of
these components are also utilities such as draggable(to make a
stage draggable), and icons(to import icons from font-awesome
libraries with ease). Components relating to scene are in their

own packages, but only the main scene which is the login scene
or starting point of our program is located directly under the ui
package. Each scene from an organizational perspective is divided
into a main class (for testing purposes only so we don’t have to
navigate the app starting from login to reach the scene we are
working on), a controller class, an fxml file and possible a css
stylesheet. The controller class is responsible for handling all ui
functionalities, like what clicking a button does or filling a text
field does and so on. It is from this class that we send requests to
the server via our API for example, after pressing the login button.
The fxml files reference this controller in their root element as an
fx:controller attribute (XML attribute that is). CSS stylesheets are
either imported from the previous controller class when loading
the new scene or referenced inside an XML attribute (Depending
on number of references in a certain stylesheet).

XIII. SUGGESTED SCHEDULE

We plan on finishing the main gui, friends listing and function-
ality, messaging and chat handling, and some games for testing by
the end of this week. After that we plan to add the security layer
which encrypts outgoing and incoming connections and decrypts
at the endpoint.

XIV. REMAINING TASKS

What remains is making a user-friends table, implementing
the friends system, a private messaging interface between users,
implementing the multiplayer functionality in games, implement-
ing a more secure communication protocol by encrypting and
decrypting using a private key available at the server and the
client, designing what remains of our client/server API, and taking
the whole project online by hosting the server on our private
server in addition to the MySQL server.

XV. DIVISION OF TASKS

Rami took care of the database, gui development, server-client
side development and API development.
Karl took care of the game development and integrating the games
with the gui.

XVI. FUTURE PLANS

We plan on making the gui more modular, in ways such as
making each game preview item an fxml element in its own with
its own properties, thus making is spawnable from code. We also
plan on integrating a tabs menu that keeps friend chats in the
main stage and not in a seperate window.

XVII. RUNNING THE PROGRAM

First, we must run the Server class, then the ChatServer class,
then GameServer class. After that, you must make sure that you
are connected to the internet in order to access our publicly hosted
database. After that, running the main class launches the program.

XVIII. APPENDIX A

A. API Documentation - Static Requests

• LOGIN:

Client sends ”LOGIN username—password” - Server
returns 2 string objects - The first is CODE.OK or
CODE.NOT FOUND, and the second is the authentication
token or CODE.NOT FOUND. The second redundant
NOT FOUND code is sent for consistency. Sometimes
redundancy is better. CODE.OK indicates that the user is
found, and the authentication token must be used by the
user in subsequent requests to access the server.

• SIGNUP:

Client sends ”SIGNUP username—password
firstname—lastname” - Server returns 1 string
object: CODE.OK or CODE.INSERTION ERROR or
CODE.ALREADY EXISTS, the first indicates that
insertion into the database has been successful, while the
second indicates otherwise, and the third indicates that
this username(email) already exists. We handle each case
accordingly.

• Rest will be implemented during this week.

B. ChatServer/Client API Documentation

• NOTIFICATION:

Chat server sends a notification to the client which needs to
be added to the client notification queue. This notification
queue in turn is linked with a scheduled thread that updates
the client gui with a notification when a message is received.

• MESSAGE:

Chat server sends a message to the client, including
sender id and message content. The client then decides on
which screen to display it, and whether or not to send a
notification (If chat window with this specific sender is
already open or not).

• Rest will be implemented during this week.

XIX. REFERENCES

1) Oracle JavaFX documentation
2) Server-Client Chat Application by Almas Baimagambetov

(inspired our implementation of Server/Client classes)
3) JFoenix JavaFX library documentation

	Introduction
	Problem Statement

	Application Flow
	Functionality
	Extra Features

	Server
	Requirements
	Implementation
	Methods

	Client
	Requirements
	Implementation

	Chat Server
	Chat Client
	Requirements

	Game Server
	Requirements

	Game Client
	Requirements

	Database
	Games
	Gamehub
	Games

	API
	Organization
	Suggested Schedule
	Remaining Tasks
	Division of Tasks
	Future Plans
	Running the program
	Appendix A
	API Documentation - Static Requests
	ChatServer/Client API Documentation

	References

